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On the solvability of anti-periodic boundary
value problems with impulse
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Abstract
In this paper, we are concerned with the existence of solutions for second order impulsive
anti-periodic boundary value problem
u(t) + f(t,u(t), ' (t)) =0, t#t, t €[0,T],
A (tg) = I (u(ty)), k=1,---,m,
u(0) +u(T) =0, v'(0) +u/(T) =0,
new criteria are established based on Schaefer’s fixed-point theorem.
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1. Introduction

In recent years, the solvability of the anti-periodic boundary value problems of first-order
and second-order differential equations were studied by many authors, for example, we refer to
[1-5] and the references therein. It should be noted that anti-periodic boundary value problems

appear in physics in a variety of situations [6,7].

Impulsive differential equations, which arise in biology, physics, population dynamics, eco-
nomics, etc., are a basic tool to study evolution processes that are subjected to abrupt in their
states (see [8-12]). Recently, the existence results were extended to anti-periodic boundary value
problems for first-order impulsive differential equations [13,14]. Very recently, Wang and Shen
[15] investigated the anti-periodic boundary value problem for a class of second order differential

equations by using Schauder’s fixed point theorem and the lower and upper solutions method.

Inspired by [13-15], in this paper, we investigate the anti-periodic boundary value problem

for second order impulsive nonlinear differential equations of the form
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u'(t) + f(tut), v (t) =0, teJO:J\{tl,---,tm},
Aulty) = Ix(u(te)), k=1, (1.1)
Au'(ty) = ((k)) k=1, '

u(0) +u(T) =0, w'(0) + u'(T )—0,
where J = [0,T], 0 <t; <ty < --- <ty <T, f:[0,T] x R> — R is continuous on (t,z,y) €
Jo x R, f(t),x,y) = B f(t,@,y), fty,,y) = Mm f(t2,y) exist, f(ty,,y) = f(tr, @ 9);
—l

*)tk

Au(ty) = ulty) —ulty), Au'(ty) =W/ (tF) — ' (t,); Ik, I} € C(R,R).

To the best of the authors knowledge, no one has studied the existence of solutions for
impulsive anti-periodic boundary value problem (1.1). The aim of this paper is to fill the gap

in the relevant literatures.

The following Schaefer’s fixed-point theorem is fundamental in the proof of our main results.

Lemma 1.1.[16] (Schaefer) Let E be a normed linear space with H : E — E a compact
operator. If the set
S:={x € Elx = AHz, for some X € (0,1)}

is bounded, then H has at least one fixed-point.

The paper is formulated as follows. In section 2, some definitions and lemmas are given.
In section 3, we obtain a new existence theorem by using Schaefer’s fixed point theorem, and
uniqueness result by using Banach’s fixed point theorem. In Section 4, an illustrative example

is given to demonstrate the effectiveness of the obtained results.

2. Preliminaries

In order to define the concept of solution for (1.1), we introduce the following spaces of

functions:

PC(J) ={u:J — R : uis continuous for any t € Jo, u(t{), u(t;) exist, and u(t;) =

PCYJ) = {u:J — R : uis continuously differentiable for any t € Jo, '(t)), u'(t;)
exist, and u'(t; ) = ' (ty), k = 1,---,m}.

PC(J) and PC!(J) are Banach space with the norms :

ullpc = supse s |u(t)],
and
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[ull per = max{{lullpc, [|u'l|pc}-

A solution to the impulsive BVP (1.1) is a function u € PC(J) N C?(Jy) that satisfies (1.1)
for each t € J.
Consider the following impulsive BVP with p > 0, > 0

—u’(t) + pu'(t) + qu(t) = o(t), te€ Jo,
Au(tk) :Ik(u(tk)), k= 1,---,m,

Aal(ty) = I (ulth)), k=1, m, 2
uw(0) +u(T) =0, ' (0) +u/(T) =0,
where o € PC(J).
For convenience, we set I}, = Iy (u(ty)), I} = I} (u(ty)),
244 _ 214
R /i T /R T I 2

Lemma 2.1. u € PCY(J)NC?(Jy) is a solution of (2.1) if and only if u € PC(J) is a solution

of the impulsive integral equation

T m
ult) = /0 G(t, s)o(s)ds + 3 (Gt 1) (—IF) + W (E t) i), (2.3)
k=1
where - .
e’2 t—s e’1 t—s
— 0<s<t<T
roT 1T = = )
G(ta 8) == - el;i{(eTitfs) 1+:T21(T+t75) t < < T (24)
Lm0 1tei? — 1ye2? 0 USUESSAL,
and
ro(t—s) r1(t—s)
Wit Bt _met)  g<ici<r g
( 78) - ro—r T26T1(T+t—s) T.leTQ(T-H—s) ( . )
1 2 1+er1T - 14er2T ) 0 S t S S S T.

Proof. If u € PCY(J)NC?%(Jp) is a solution of (2.1), setting

v(t) = /() — rou(t), (2.6)
then by the first equation of (2.1) we have

V() —ro(t) = —o(t), t# . (2.7)
Multiplying (2.7) by e~ "'t and integrating on [0,¢] and (t1,], respectively, we get

t
e "y(t) —v(0) = —/ o(s)e”%ds, 0<t<ty,
0

t
e My(t) — e MMyt = —/ o(s)e %ds, t; <t <to.
t1
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So
t
o(t) = e w(0) — / e 50 (s)ds + e T (IF —rolh), <t <t
0

In the same way, we can obtain that

O<tp<t

U(t) = 67’115 |:’U(0) /0 —T1S 5 dS + Z e T1tk — ’I“QIk)] , te J, (28)

where v(0) = 4/(0) — rou(0). Multiplying (2.6) by e~ "2! and integrating on [0,#;] and (¢, ]
(tp <t < tgy1), respectively, similar to the proof of (2.8), we have

u(t) =

O<tp<t

t
0) —|—/ v(s)e "?%ds + Z em’“[k] , teld (2.9)
0

By some calculation, we get
¢ 1 t
/ v(s)e s = [1}(0)(6”1 ra)t / elrr2)t _ o(n=r2)s)5(5)e 15
0 L =72 0

+ Z ( (r1—r2)t (7’1 ro tk) efrltk —TQIk;)] .

O<tp<t

(2.10)

Substituting (2.10) into (2.9), we obtain

u(t) = - i - [(rlu(O) —'(0))e"" + (' (0) — rqu(0))e™t

t
_|_/ (erg(tfs) _erl(t s) d8—|— Z 1(t— tk Ik —TQIk)
0 0<tp<t

O<tp<t

. Z e?‘z(t*tk)(II’g — Tl-[k)] s te [OaT]?

(2.11)

u'(t) = - irg {rg(nu(o) —/(0))e"2" + 1 (v (0) — rou(0))e™!

t
—l—/ (rae=%) — =)o (s)ds + > re TR (I — ro )
0 O<tp<t

Z 7“2€r2(t_tk)(1;; — Tlfk)] s t e [O,T]

0<trp<t

(2.12)
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In view of u(0) +w(7T") = 0, «/(0) + «/(T) = 0, we have

u/(O) — T’QU(O) = ﬁ |:

T
[[ et =o(a— ¥ e”<T—tk><f:—mk>], (213

0 0<tp<T

r1u(0) — o' (0) = Hﬁ [— /OT g (s)ds + Y e TT(I; —mfk)] . (214)

0<t<T
Substituting (2.13) and (2.14) into (2.11), by routine calculation, we can get (2.3).
Conversely, if u is a solution of (2.3), then direct differentiation of (2.3) gives —u”(t) =
o(t) —pu/(t) — qu(t), t # t,. Moreover, we obtain Auli—y, = Ip(u(ty)), Au'|i=, = Ii(u(ty))
u(0) +u(T) = 0 and v/ (0) +u'(T) = 0. Hence, u € PC'(J)NC?(Jp) is a solution of (2.1) O

)

Define a mapping A : PC(J) — PC(J) by
T
:/0 G(t,s)[f (s, uls),u/(s)) + pu'(s) + qu(s)]ds

m
Z (t,ti)(=I}) + W (t, tp) L], t€[0,T). (2.15)
In view of Lemma 2.1, we easily know that u is a fixed point of operator A if and only if u

is a solution to the impulsive boundary value problem (1.1).

Lemma 2.2 If u € PCY(J) and u(0) + u(T) = 0, then

e < 5 ([ W+ 3 18u00).

k=1

Proof. Since u € PC*(J), we have

)+ D Aulty) +/ (2.16)

O<tp<t

Set t =T, we obtain from u(0) + u(7) = 0 that

1™ T
0)=—3 (lgl Aulty) + /0 " (s)d5> . (2.17)

Substituting (2.17) into (2.16), we get

%</Otu/(s)ds_/tTu/( >+%( Z Au(ty) — ZAU 17 )|

0<tp<t t<ty,

< % (/Ot [/ (s)]ds + /tT \u/(s)\d8> +% ( > Qulte)l + )] ‘A“(t’f)‘)

O<tp<t t<tg

Ju(t)| =
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= % (/OT |u'(s)|ds + Z |Au(tk)|> .

k=1
The proof is complete. O

It is easy to check that

1 1 1
G(t < - =G
IG5l =T (1+eT2T 1+e7"1T) '

(2.18)
Since | (
_T‘lerl(tfs roe’2 t—s)
gG(t, S) = 1 1+?;1+7; )+ 1+e'r2T(T;t : 0 S s < t S T
— rie’l s —roe’2 —s
ot Ty — T2 T O 0<t<s<T,
and
rirger2(t—s) rorier1(t—s)
gW(t S) = 14-er2” 14er1?T 0<s<t<T,
ot ' r—r rirge’1(T+t—s) riroer2(T+t=s) cte e
! 2 1+4em1 ™ - 1+er2T ) t S S S T,
we obtain by r1 > —r > 0 that
er(t—s) er2(t—s)
gG(t ) < [} 14er1T 1+er2T o 0<s<t S T
8t »8 rT — 7 er1(T+t—s) er2(T+t—s) <i< <7
1 2 1+6T1T 1+€r2T 5 < S < S
er1(t—s) era(t—s)
" 1+erT + 1+em2T > 0<s<t<T
|[W(t,s)| < Fen™ )
— el s) er2(T+t—s) ci<s<T
1 ) Tteril Ite2T » t S ,
and
er2(t—s) er1(t—s)
2 < ﬂ 14em2T + 14er1iT 0 S s<t< T’
W(t,S) = r1(T+t—s) ro(THt—s)
el e’2
ot Ty — T2 1T T o 0<t<s<T.

Let h(x) = Be™* 4+ Ce"™?, for x € [0,T], where B,C are two nonnegative constants. Obvi-
ously, h”(x) > 0, that is, h is a convex function on [0, T]. Thus,

h(z) < max{h(0), h(T)} = max{B + C, Be"T 4+ Ce™"}.

(2.19)
By (2.19), we easily obtain that
0 71 enT er2T
—G(t < =G Wit <G 2.20
ot (t5) Trp—ro <1+e7"1T+1+e7’2T 2 Wit s) <Gy, ( )
and . .
0 —7r17y e e
— W (t < = (3. 2.21
ot (’S)‘_n—m <1+6T1T+1+6T2T> 3 (2.21)

3.Main results

Throughout this section, we assume that
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(Hy) 3/ t)dt + 6pT < 2;

(Hz2) There exist constant 0 < n < 1 and functions a,b, ¢, h € C(J,[0,+00)) such that
£ty 0)] < a(®lul + bl + c)[o] + h(t);

(Hs3) There exist nonnegative constants g, Ok, vk, 0k (K =1,2,---,m) such that
Ie(w)] < aplul + B, | (uw)] < yklul + 0k, k=1,-m.

For convenience, let

(fo t)dt +2qT + 377" 1%) 3 [ o(t)dt
a ) a )
YT 23 T e(tydt — 6pT 27 93T c(t)dt — 6pT
(3.1)
3 (o ht)dt + 0, 5;)
as = .
P T 23 T e(tydt — 6pT
Theorem 3.1. Suppose that (H;) — (Hs) hold. Further assume that
T blT
1, 3.2
22— " Z v ZO‘ = (3:2)
where
T 1 (T m
by = / a(t)dt + 3 / c(t)dt + Z[(p +a1)o; + i,
0 0

i=1

ay as in (3.1) and ¢* = maxycyc(t) < 2. Then BVP (1.1) has at least one solution.

Proof. It is easy to check by Arzela-Ascoli theorem that the operator A is completely continuous.

Assume that u is a solution of the equation
u=MNu, Xe(0,1).

Then,
u”(t) = MAu)" (t) = A[= f (¢, u(t), u'(t)) — pu'(t) — qu(t) + p(Au)'(t) + q(Au)(t)]

= = Af(tu(t),u'(t) — p(A = Du'(t) — g(A = Du(?), (3.3)
—u(t)u” (t) = u(t) f(t,u(t), o' () + p(X = Du(®)u' () + g(A = Du?(t)
< Mu(t)f(t,u(t), ' (t) + p(\ — Du(t)u'(t). (3.4)

Integrating (3.3) from 0 to T', we get that
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T m
U(T) = (0) = / o (Bt + 517
i=1

0

_ —)\/ £t u(t), o (£)dt — p(X — 1)/Tu’(t)dt—q()\— 1)/0Tu(t)dt+g;1';‘. (3.5)

0

In view of u/(0) + /(T) = 0, we obtain by (3.5) that

T

/ 1 T / / T 1 . *
WO < 5 [ 1O @+ [ Ol [ ol 3 31 (35

Integrating (3.3) from 0 to ¢, we obtain that

A (t) — ' (0) = / Sds+ 3 IF

0<t; <t

:—)\/fsu /(s))ds — ()\—1)/

0

tu'(s)ds—q()\ )/ s)ds + Z I;.

0<t;<t
(3.7)

From (3.6), (3.7) and assumptions (Hz), (Hs), we have
T T T m
(1)) < Ju'(0)] + /0 o) s +20 [ o6 +2g [ (ol + 311
T
<3 [ @O + Ol + e @)+ b+ 3p [ ol

+3q/0 0+ 5 3 il + 5)

T T T T
<3 <Hu|!pc/0 (it + ullpe: [ b0+ e [ eyt + | h(t)dt)

+3pT ||l pc + 3¢T [|ull pc + 5 Z Yillullpe + 6i),
=1

that is,

3 (T 3
o lpe < (5 | atta +3q7 + 5Zwi) Jullec
=1
. T 3 T
+|yuupc/0 b(t)dt + 5/0 c(t)dt + 3pT | [ | pe + 2 / Bt + 2 Za.

Thus, in view of assumption (Hj), we have

|v'|lpe < arllullpe + azllulpe + as, (3.8)
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where a1, as,a3 are as in (3.1). Integrating (3.4) from 0 to 7', we get that
T
- / (8t < / V)t +p(A — 1) / w(td (t)dt. (3.9)
0

In view of u(0) +w(7T") = 0, «/(0) + «/(T) = 0, we have

/ "y ()t = - / )
=3[ oy [Faezwy s [T

% [(w2(t1 = 0) = w2(0)) + (u2(ta — 0) — w2(t1 +0)) + - -+ (WA(T) — Z(t +0))]
% [(w2(5 — 0) = w2(t +0)) + (u(t2 — 0) — w(ta +0) + -+ + (u(ty — 0) — (b +0))]
= 2 [ (ultr = 0) + ults + 0))1y — (ults — 0) + ulta + Oz — -+ = (ult — 0) + ultm + )],
(3.10)

and

T T
/0 (bl (£)dt = /0 w(t)d(d (1))

t1 t2 T
= [Tuwdt )+ [Tuvd'©)+ -+ [ uvit o)

t1

1 t2 T
= w0 — [ @@ u@u @l - [ o) uu o, - [ o)

0

= u(t; — 0)u'(t; — 0) — w(0)u'(0) + u(ty — 0)u (ta — 0) — u(ty + 0)u/(t; + 0)
+ - 4 w(T)u (T) — u(t, + 0)/ (t, +0) — /OT(u'(t))th

=u(t; —0)u'(t1 — 0) —u(ty + 0)u'(t; +0) +---
et — 0) (t — 0) — w(ty + )i (Ey + 0) — /O C ()2t

=u(t; — 0)u'(t1 — 0) — u(ty — 0)u'(t1 + 0) + u(ty — 0)u'(t1 + 0) — u(ty + 0)u'(t1 + 0)
+Fulty — 0 (t, — 0) — ulty, — 0)u' (t, + 0)

T
Sty — O) (tn + 0) — w(t + 0)e (£ + 0) — /O (' (£))2dt
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= —u(ty — OV —u/(ty +0) [y — - — u(ty, — 0)IF — u/(ty, +0)I,, — /OT(u'(t))th. (3.11)

Substituting (3.10) and (3.11) into (3.9), we obtain by (Hsz), (Hs) and (3.8) that

T T
/0 (u' (t))2dt < A/O w(t) f(t,u(t), o (t))dt —u(ty — 0)IF —u/'(t; +0)I1 — - — u(ty, — 0)I},
i (tn + O +p<1‘” [t — 0) + ults + Oy + -+ (ulb — 0) + ulb + 0)) ]
YT WOt + ullpo S 111+ o X 1L+ p(1 - Nlulee 3 1]
=1 i=1 =1
< [t WOt + ullpo S I+ 1D + o S 1
=1 =1

< /0 (a(t)u®(t) + b()lu(®)|*" + %C(t)(uz(t) + (u(1))?) + h(t))dt

m

m
+ > Iplesllullpe + Bi) + villullpe + dilllullpe + Y (cillullpe + 85) W] pe
=1 =1

T ct T
<lulbe [ attde+ 52 [ oo+ Sl [ e+ S [ @y

4 [ b+ 3 e+ )l + 3 (8 + )l
i=1 1=1

m m m
+ay Z aillul| e + an Z aillul e + a2 Y Billullbe + (@18 + azai)lul pe +as Y B;.

Thus
T e 1 1+
| @ < [bulllfbe + ballul 52 + ballll e + ballulfpc +bs). (3.12)
0 1—c¢*/2
where . .
by :/ t)dt + = / dt—i-z p—i—al)a,—l—%) by =/ b(t)dt+a22a,~,
0 0 i=1
(3.13)
m m T m
b3 ZZ((p—i-m)Bi—i-agai—i—éi), b4 ZGQZﬁZ‘, b5 :/0 b(t)dt—i—agz:ﬁi.
i=1 i=1 i=1

By Lemma 2.2 and (3.12), we have

2 2
||uu2pcs§</0T|u'<t>|dt> 3 [ |dtz|f|+ (Zw)

=1
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1/2 m

vT ([T, <
<_/ )t + 5 (/0 (u(t))%) ;inim;ym?

1
<= [ballullBe + ballull 5 + bsllul o + ballulpe + bs)
T 147 n 1/2 &
aE [ballullbe + ballull 57 + bsllull e + ballulhe +bs| S (aillullpe + B)
=1
m m
+5 20 lullbe + 20iBilullpe + 57).
=1

It follows from the above inequality and condition (3.2) that there exists M; > 0 such that
llu||lpc < Mi. Thus, we get by (3.8) that

[u'|[pc < a1Miy + aa MY + az == Mo. (3.14)

Thus, ||ul|pcr < max{M;, Ms}. It follows from Lemma 1.1 that BVP (1.1) has at least one

solution. The proof is complete. O

Corollary 3.2. Assume that (H;), (Hg2) hold. Suppose that there exist nonnegative constants
Bk, 0k (k=1,2,---,m) such that

(Ha) ()] < By [TE(w)] <0k k=1,---m,
holds. Further assume that
/0 £)dt + = / Bt < 2(2 — &), (3.15)
where ¢* = maxyey c(t) < 2. Then BVP (1.1) has at least one solution.

Proof. Set ap = v =0, k = 1,2,---,m. Then (Hs) reduces to (Hy), and (3.1) reduces to
(3.15). So, by Theorem 3.1, we know that Corollary 3.2 holds.

Theorem 3.3. Suppose that there exist constants Ky, Ks, and Lyl (k = 1,2,---,m) such
that

’f(t,u,’l)) - f(tamay)’ < Kl’u_ .%" +K2‘U _y‘7 V%Uaxay €R,

and

[Tk (u) — I(v)| < Lglu—v|, |i(uw) —I;(v)] < lglu—v|, Yu,veER.

Moreover suppose that
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(K1 + Ko+ p+ q)T max{G1,G2} + Z(max{Gl, Go} Ly + max{G2,Gs}i) <1, (3.16)
k=1

where G1, G2 and Gs are as in (2.18), (2.20) and (2.21), respectively, then BVP (1.1) has a
unique solution.

Proof. From (2.15), we have

|Au(t) — Av(t)| =

/ G(t,s) u'(s)) = f(s,v(s),0'(s)) + p(u/(s) —v'(s))
+q(u(s) d5+z (t,te) (g (v(tr)) — I (u(t))) + Wt tk) (Tk(u(te)) — Ix(v(tk)))]

T
S/O G(t,s)[[1f (s, uls),u'(s)) = f(s,0(s),0"(s)] + plu'(s) — v'(s)]

+alu(s) = v(s)|lds + DG t)llTi (v(te)) — Li(ultn)| + W (E t) [ T (ultr)) — Te(v(ti)]

k=1
T
< /0 |G(t, s)[[Kr|u(s) = v(s)| + Kalu'(s) = v'(s)] + plu'(s) =/ (s)]

+alu(s) —v(s)lds + Y (|G, tr) | Li|ulte)) — v(ti)] + Wt )|l u(te)) — v(te))]]
=1

< (K1 + K» —i—p—i—q)Hu—vacl/ |G(t,s)|ds + Z |G(t, t)| Li + |W (¢, te) [lg]|lu — v]| pcn
k=1

<[(K1+ Ko +p+q)TGL+ Y _(G1Li + Goli)]|lu — vl per -
k=1

T

|(Au)'(t) — (Av)' ()] = 2 $)(f(s,uls),u'(s)) = £(s,0(s),2'(s)) + p(u(s) = v'(s))

Fafuls) —v()ds + (o GlE ) EE(0(t4) — T (1) + oW (L 1) Iy <tk>>—1k<v<tk>>>]|
k=1

1o
g/—
0

ot
+qlu(s) )|]ds + Z {

G(t,s)

(K1 lu(s) — v(s)| + Kafu'(s) = v'(s)] + plu(s) — /()]

t tk Lk]u(tk)) — U(tk))’ + gW(t,tk)

ot

tfu(t)) = o8|

< (Ki+ Ky +p+Q)HU—UHPcl G(t,s)

ds+2{

G(t,ty)| Ly
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2W(t,tk)

+‘8t

ATTE

<[(Ki+ Ko+ p+q)TGa+ > (GaLi + Gsli)]llu — vl|per -
k=1

Hence,

|Au — Av||lpe < [(K1+ K2 +p+ @)TG1+ Y (G1Ly, + Galy)]|lu — vl pen,
P

[(Aw)" = (Av)'|pe < (K1 + Ko +p+@)TGa + Y _(GoLy, + Gsly)][[u — vl pen-
k=1

Thus, we obtain

HAU, — AUHPCl < [(Kl + Ko +p+ q)TmaX{Gl, GQ}
m
+ Z(maX{Gl, Go} Ly, + max{Ga, Gs }i)]||u — v||pcr-
k=1
In view of (3.16) and Banach fixed point theorem, A has a unique fixed point. The proof is
complete. O
4. Example

In this section, we give an example to illustrate the effectiveness of our results.

Example 4.1. Consider the problem

() 4 u(t) sin® t — etul/?(t

' )+ Lu
pa(3) =sn(u(3)). on(

"(t)cos®t + 2 +sin2t =0, t¢€ [0,%}\{%,% ,
c
/

o8 (u (%))7 (4.1)

A/ %)zl—i—%cosQ u(% ), Au (%) 3sm(u(§)),
u(0) +u (%) =0, v'(0)+u (5) =0,

Let f(t,u,v) = u(t)sin®t — etu'/2(t) + L cos® t + 12 +sin 2¢, I1 (u) = sinw, Ir(u) = cosu, If(u) =
1+ZCOS U, 12( )—%sinu7T:%7J: [O’g]_

It is easy to show that

L] <1, k@] <1, |[H@l <35 Bl <y,
and

[f(tu,0)| < a(®)]ul + b(8)|u]'? + c(t)]o] + h(t),

where
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a(t) =sin®t, b(t) =¢€', c(t)=3cos®t, h(t)=1>+sin2t (4.2)
Thus, (Hz) and (Hy) hold. Let p =0 and ¢ = 1, we have by (3.1) and (4.2) that

127 24(e™/? — 1) 7 + 68
= ) as = ) a3 = )
16 — 37 16 — 37 16 — 37

a

and

T 3 w/2 3
3/ c(t)dt + 6pT = —/ cos? tdt = 2 < 2,
0 2 Jo 8

which implies that (H;) holds. Moreover, we see that

w/2 1 [m/2 5
by = / a(t)dt + —/ C(t)dt = 2m < 3 =2(2— ),
0 2 Jo 16

where ¢* = maxyejc(t) = % Thus, (3.15) holds. So, all the conditions of Corollary 3.2 are

satisfied. By Corollary 3.2, anti-period boundary value problem (4.1) has at least one solution.
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